Escargot controls the sequential specification of two tracheal tip cell types by suppressing FGF signaling in Drosophila
نویسندگان
چکیده
Extrinsic branching factors promote the elongation and migration of tubular organs. In the Drosophila tracheal system, Branchless (Drosophila FGF) stimulates the branching program by specifying tip cells that acquire motility and lead branch migration to a specific destination. Tip cells have two alternative cell fates: the terminal cell (TC), which produces long cytoplasmic extensions with intracellular lumen, and the fusion cell (FC), which mediates branch connections to form tubular networks. How Branchless controls this specification of cells with distinct shapes and behaviors is unknown. Here we report that this cell type diversification involves the modulation of FGF signaling by the zinc-finger protein Escargot (Esg), which is expressed in the FC and is essential for its specification. The dorsal branch begins elongation with a pair of tip cells with high FGF signaling. When the branch tip reaches its final destination, one of the tip cells becomes an FC and expresses Esg. FCs and TCs differ in their response to FGF: TCs are attracted by FGF, whereas FCs are repelled. Esg suppresses ERK signaling in FCs to control this differential migratory behavior.
منابع مشابه
Tracheal cells invaginate from the epidermis and subsequently migrate in a stereotyped pattern guided by the local expression of the Fibroblast growth factor (FGF) homolog Branchless (Bnl)
INTRODUCTION Tip cells are specialized endothelial cells that lead the migration of sprouting vessels and mediate anastomosis formation during vascular development in vertebrates (Geudens and Gerhardt, 2011; Herwig et al., 2011). Signaling through Vascular endothelial growth factor receptor (VEGFR), a receptor tyrosine kinase (RTK), is involved in selecting tip cells and in guiding their direct...
متن کاملInterplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea.
The patterned branching in the Drosophila tracheal system is triggered by the FGF-like ligand Branchless that activates a receptor tyrosine kinase Breathless and the MAP kinase pathway. A single fusion cell at the tip of each fusion branch expresses the zinc-finger gene escargot, leads branch migration in a stereotypical pattern and contacts with another fusion cell to mediate fusion of the bra...
متن کاملCadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot.
Coordination of cell motility and adhesion is essential for concerted movement of tissues during animal morphogenesis. The Drosophila tracheal network is formed by branching, migration and fusion of tubular ectodermal epithelia. Tracheal tip cells, located at the end of each branch that is going to fuse, extend filopodia to search for targets and later change their cell shape to a seamless ring...
متن کاملFGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2.
How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal...
متن کاملThe Drosophila dysfusion basic helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein.
The development of the mature insect trachea requires a complex series of cellular events, including tracheal cell specification, cell migration, tubule branching, and tubule fusion. Here we describe the identification of the Drosophila melanogaster dysfusion gene, which encodes a novel basic helix-loop-helix (bHLH)-PAS protein conserved between Caenorhabditis elegans, insects, and humans, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 143 شماره
صفحات -
تاریخ انتشار 2016